Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Porter RL. et al.
  • Year: 2022
  • Journal: J Clin Invest
  • Applications: in vitro / mRNA / jetMESSENGER
  • Cell type: THP-1
    Description: Human acute monocytic leukaemia cells
    Known as: THP1, THP 1

Method

Each RNA (500 fmol) was then transfected using jetMESSENGER (Polyplus-transfection, Cat# 15001) in accordance with the manufacturer’s instructions. After 48 hours, the cells were harvested, and gene expression was analyzed by RT-qPCR.

Abstract

Aberrant expression of viral-like repeat elements is a common feature in epithelial cancers, but the significant diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering that is independent of tissue of origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that HSATII satellite repeat expression was highly associated with epithelial mesenchymal transition (EMT) and anti-correlated with interferon (IFN) response genes indicative of a more aggressive phenotype. This relationship of HSATII with high EMT and low IFN response genes was also found in RNA-seq of primary ovarian cancers and associated with significantly shorter survival in a second independent cohort of ovarian cancer patients. Repeat RNAs were also found enriched in tumor derived extracellular vesicles that were capable of stimulating monocyte derived macrophages demonstrating a mechanism of altering the tumor microenvironment with these viral-like sequences. Targeting of HSATII with anti-sense locked nucleic acids (LNAs) stimulated IFN response and induced MHC I expression in ovarian cancer cells lines, highlighting a potential strategy of modulating the repeatome to re-establish anti-tumor cell immune surveillance.


Go to