Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Lei T. et al.
  • Year: 2020
  • Journal: DNA Cell Biol
  • Applications: in vitro / miRNA / INTERFERin
  • Cell types:
    1. Name: NCI-H1299
    2. Name: PC9
      Description: Human lung adenocarcinoma cell line

Abstract

Advanced nonsmall-cell lung cancer (NSCLC) patients with mutated epidermal growth factor receptor (EGFR) can remarkably benefit from target therapy of EGFR-tyrosine kinase inhibitors (TKIs). However, increasing drug sensitivity and improving outcomes of NSCLC patients to EGFR-TKI therapy remains a challenge. Several studies have shown a link between microRNAs and drug resistance in cancer. In this study, we hypothesized that the rs12740674 single nucleotide polymorphism in the enhancer of miR-1262 may affect its expression, which may impact the outcome of NSCLC patients treated with EGFR-TKIs. The rs12740674 polymorphism was genotyped in two independent cohorts, including 319 EGFR-TKI treated stage IIIB/IV NSCLC patients. The allele-specific regulation on miR-1262 transcription by rs12740674 and impacts of miR-1262 on gefitinib sensitivity were evaluated in vitro and in vivo. Cox regression analyses indicated that the rs12740674 T allele was significantly associated with short survival time in both cohorts (p < 0.05). Luciferase assays demonstrated that the rs12740674 T allelic enhancer showed weaker capability to promote miR-1262 transcription compared with the C allelic enhancer, which may be due to reduced transcription factor binding according to electrophoretic mobility shift assays. Furthermore, significantly decreased miR-1262 expression in NSCLC and nontumor lung tissues of T allele carriers was observed compared with levels in C allele carriers. Moreover, miR-1262 expression enhanced the anticancer effects of gefitinib on NSCLC cells. Our data indicate that miR-1262 may be a potential therapeutic target for NSCLC.

Go to